Depletion of plasma membrane cholesterol dampens hydrostatic pressure and shear stress-induced mechanotransduction pathways in osteoblast cultures.
نویسندگان
چکیده
The preferential association of cholesterol and sphingolipids within plasma membranes forms organized compartments termed lipid rafts. Addition of caveolin proteins to this lipid milieu induces the formation of specialized invaginated plasma membrane structures called caveolae. Both lipid rafts and caveolae are purported to function in vesicular transport and cell signaling. We and others have shown that disassembly of rafts and caveolae through depletion of plasma membrane cholesterol mitigates mechanotransduction processes in endothelial cells. Because osteoblasts are subjected to fluid-mechanical forces, we hypothesize that cholesterol-rich plasma membrane microdomains also serve the mechanotransduction process in this cell type. Cultured human fetal osteoblasts were subjected to either sustained hydrostatic pressure or laminar shear stress using a pressure column or parallel-plate apparatus, respectively. We found that sustained hydrostatic pressure induced protein tyrosine phosphorylation, activation of extracellular signal-regulated kinase (ERK)1/2, and enhanced expression of c-fos in both time- and magnitude-dependent manners. Similar responses were observed in cells subjected to laminar shear stress. Both sustained hydrostatic pressure- and shear stress-induced signaling were significantly reduced in osteoblasts pre-exposed to either filipin or methyl-beta-cyclodextrin. These mechanotransduction responses were restored on reconstitution of lipid rafts and caveolae, which suggests that cholesterol-rich plasma membrane microdomains participate in the mechanotransduction process in osteoblasts. In addition, mechanical force-induced phosphoproteins were localized within caveolin-containing membranes. These data support the concept that lipid rafts and caveolae serve a general function as cell surface mechanotransduction sites within the plasma membrane.
منابع مشابه
Non-Overlapping Functions for Pyk2 and FAK in Osteoblasts during Fluid Shear Stress-Induced Mechanotransduction
Mechanotransduction, the process by which cells convert external mechanical stimuli such as fluid shear stress (FSS) into biochemical changes, plays a critical role in maintenance of the skeleton. We have proposed that mechanical stimulation by FSS across the surfaces of bone cells results in formation of unique signaling complexes called mechanosomes that are launched from sites of adhesion wi...
متن کاملThe Role of Membrane Lipid Rafts in Osteoblastic Sensing and Propagation of Mechanical Forces: a Microfluidic- Based Single Cell Analysis Study
With the advent of microfluidic devices it has become possible to control on-demand the properties of fluidic environments at the microscale. This has opened the way to the development of microfluidic systems capable of analysing the response of individual cells under exposure to a range of different physical and chemical stimuli. This methodology, which has been defined by many as single-cell ...
متن کاملRole of caveolin-1 in the regulation of the vascular shear stress response.
In blood vessels, endothelia are submitted to constant shear effects and are, under normal conditions, capable of responding to any variation in hemodynamic forces. Caveolae - 50- to 100-nm plasma membrane invaginations present at the surface of terminally differentiated cells and particularly enriched in ECs - are composed of a high sphingolipid and cholesterol content and the protein caveolin...
متن کاملFlow (shear stress)-induced endothelium-dependent dilation is altered in mice lacking the gene encoding for dystrophin.
BACKGROUND Dystrophin has a key role in striated muscle mechanotransduction of physical forces. Although cytoskeletal elements play a major role in the mechanotransduction of pressure and flow in vascular cells, the role of dystrophin in vascular function has not yet been investigated. Thus, we studied endothelial and muscular responses of arteries isolated from mice lacking dystrophin (mdx mic...
متن کاملThe Intrinsic Incompressibility of Osteoblast-like Cells.
This paper presents a new methodology, apparatus design, and the experimental results of ongoing research into the measurement of the mechanical properties of musculoskeletal tissue at the cellular level. A microchamber was constructed that provides a controlled hydrostatic pressure environment for these cells where optical sectioning, via epifluorescence microscopy, was used to acquire volume ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- American journal of physiology. Cell physiology
دوره 286 4 شماره
صفحات -
تاریخ انتشار 2004